Factors affecting proliferation and differentiation of Lepidopteran midgut stem cells.
نویسنده
چکیده
Midgut stem cells of last instar larvae and pupae of Heliothis virescens, Lymantria dispar and several other Lepidopteran species have been cultured in vitro and have been induced to proliferate using low titers of ecdysteroids and the 77-Kda peptide fragment, alpha-arylphorin, isolated and identified from pupal fat body tissue. The insulin-related hormone, Bombyxin, also induced mitosis in cultured midgut stem cells; it appeared to be fast-acting and quickly inactivated, while alpha-arylphorin was slower to act and had a longer lasting effect in vitro, indicating different functions for these proliferation agents. Changes in Calcium ion concentration within or outside the cells discretely affected stem cell differentiation, indicating a role for second messenger participation in peptide regulation of this process. Four different peptides (MDFs 1-4) that induced midgut stem cells to differentiate to mature midgut cell types in vitro were isolated and characterized from conditioned media and hemolymph of H. virescens and L. dispar. However, platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and all-trans retinoic acid (RA) from vertebrate sources induced differentiation to non-midgut cell types as well. MDF1 was located in basal areas of columnar cells of midgut epithelium, although MDF2 was observed in all of the cytoplasm of columnar cells and in droplets of antibody positive material in the midgut lumen, suggesting a digestive function as well for this peptide. Anti-MDF-3 stained the central areas of cultured midgut columnar cells and the bases of columnar cells of midgut epithelium in vivo. Midgut secretory cells stained with anti-MDF-4; streams of MFD-4-positive material were observed extending from secretory cells facing the epithelial lumen, and as a layer on the hemolymph-facing side, suggesting an endocrine or paracrine function for this or an immunologically similar peptide.
منابع مشابه
A Review of the Factors Affecting the Proliferation of Neural Stem and Progenitor Cells
Neural stem cells are undifferentiated cells that are located in limited areas of central nervous system. These cells have proliferation and self-renew ability and can be differentiated into neurons and glial cells. Mature nerve cells do not have proliferative ability; and due to the limited number of nerve stem cells, injuries to the nervous system are not recoverable. The purpose of this revi...
متن کاملStem cells from midguts of Lepidopteran larvae: clues to the regulation of stem cell fate.
Previously, we showed that isolated stem cells from midguts of Heliothis virescens can be induced to multiply in response to a multiplication protein (MP) isolated from pupal fat body, or to differentiate to larval types of mature midgut cells in response to either of 4 differentiation factors (MDFs) isolated from larval midgut cell-conditioned medium or pupal hemolymph. In this work, we show t...
متن کاملNew Horizons in Enhancing the Proliferation and Differentiation of Neural Stem Cells Using Stimulatory Effects of the Short Time Exposure to Radiofrequency Radiation
Mobile phone use and wireless communication technology have grown explosively over the past decades. This rapid growth has caused widespread global concern about the potential detrimental effects of this technology on human health. Stem cells generate specialized cell types of the tissue in which they reside through normal differentiation pathways. Considering the undeniable importance of stem ...
متن کاملDevelopmental and hormonal regulation of midgut remodeling in a lepidopteran insect, Heliothis virescens
Midgut tissue undergoes remodeling during metamorphosis in insects belonging to orders Lepidoptera and Diptera. We investigated the developmental and hormonal regulation of these remodeling events in lepidopteran insect, Heliothis virescens. In H. virescens, programmed cell death (PCD) of larval midgut cells as well as proliferation and differentiation of imaginal cells began at 108 h after ecd...
متن کاملMatrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells
Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archives of insect biochemistry and physiology
دوره 74 1 شماره
صفحات -
تاریخ انتشار 2010